

Automatic Grouping on Performance Investigation

Francisco de Melo

May 5th, 2017

École Polytechnique de Montréal Laboratoire **DORSAL**

1 Outline

- Problem description
- ECCT Model
- Methodology
- Analysis techniques
- Utilization
- Use Case:

Description Method Results

- ECCTView
- Status

Compare **several executions** of the same software

The **current tools are limited** to compare several executions of the same software or require human analysis to **find root cause problems**.

- Construction of tree using Ittng and other techniques
- UST level

Overall view:

- Instrument the code
- Create the tree
- Apply the classification methods

Techniques

Support Vector Machine k-means algorithm

> Auto grouping mechanism

Auto grouping

This **automatic technique** can be applied for the following **situations**

Comparing C/C++ library performances **Performance Regression** investigation User Space Trace: required instrumentation

OpenCV

In a regression case in OpenCV, a later version of the HoughLines decreased the performance in the new version. Function: HoughLines Versions: 3.1 vs 3.0

HoughLines

Run several times the process on **both** versions

Record the information for each run

Apply the grouping techniques

Group Comparison

10 Results

Results: Classification in 2 groups

FAST Group	Slow Group
6500 Cache misses	2400 Cache misses

Version 3.0 to 3.1

250 commits > 4 lines of difference

10 Conclusion

Result

Cache misses different found as performance cause by comparing two the means of each metric

Lines of code reduction to 4 lines Unit test to find cache misses

11 Discussion

Automate Grouping

Take the best number of groups

Apriori Algorithm for more complex cases

Cross over of the groups to find root causes

	А	В	С
Α	Х	75%	100%
В	75%	Х	65%
С	100%	65%	Х

Comparison of groups

Compare them using a specific algorithm

ECCT View

(i) Display the tree(ii) Display groups mechanisms

12View

Function	 Dep 	th Entry time	19:00:00.00000000	19:00:00.00000005	19:00:00.00000010
🕶 🏶 Tree					
≡level 0	0	19:00:00.000 000)		root
≡level 1	0	19:00:00.000 000)	ad	dr=0x400701
🗏 level 2	0	19:00:00.000 000		ad	dr=0x400636
≡ level 3	0	19:00:00.000 000)	ad	dr=0x400673
level 4	0	19:00:00.000 000)	ad	dr=0x400636
≡ level 5	0	19:00:00.000 000)	ad	dr=0x4006ba
🔳 level 6	0	19:00:00.000 000)	ad	dr=0x400673
level 7	0	19:00:00.000 000)	ad	dr=0x400636
🔳 level 8	0	19:00:00.000 000)	ad	dr=0x400636
≡level 9	0	19:00:00.000 000)	ad	dr=0x400673
≡level 10	0	19:00:00.000 000)	ad	dr=0x400636
level 11	0	19:00:00.000 000)	ad	dr=0x4006ba
level 12	0	19:00:00.000 000)	ad	dr=0x400673
level 13	0	19:00:00.000 000)	ad	dr=0x400636
level 14	0	19:00:00.000 000)	ad	dr=0x400636
level 15	0	19:00:00.000 000)	ad	dr=0x400673
level 16	0	19:00:00.000 000)	ad	dr=0x400636
level 17	0	19:00:00.000 000)	ad	dr=0x4006ba
level 18	0	19:00:00.000 000)	ad	dr=0x400673
level 19	0	19:00:00.000 000)	ad	dr=0x400636
level 20	0	19:00:00.000 000)	ad	dr=0x400636
level 21	0	19:00:00.000 000		ad	dr=0x400673
level 22	0	19:00:00.000 000)	ad	dr=0x400636
level 23	0	19:00:00.000 000)	ad	dr=0x4006ba
					the second se

Implemented the Tree [done] Application of Grouping methods [done] Apriori Method [done]

Displaying the groups and associations [doing]

Doray, F, and M. R. Dagenais, "**Diagnosing Performance Variations by Comparing Multi-Level Execution Traces**", IEEE Transactions on Parallel and Distributed Systems, vol. pp,issue: 99 no. 1, 2016.

Andrea Adamoli and Matthias Hauswirth. **Trevis: A context tree visualization & analysis framework and its use for classifying performance failure reports**. In SoftVis '10: Proceedings of the ACM Symposium on Software Visualization, 2010.

J. M. Spivey. Fast, Accurate Call Graph Profiling. Softw. Pract. Exper., 34(3):249-264, 2004. W. N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang. Precise Calling Context Encoding. In ACM International Conference on Software Engineering, 2010.

15

Questions

isnaldo-francisco.de-melo-jr@polymtl.ca Any other info?

16 **Obrigado**

